
Rheumatology 2006;45:833–841 doi:10.1093/rheumatology/kel118

Advance Access publication 16 May 2006

Overlapping humoral autoimmunity links rheumatic
fever and the antiphospholipid syndrome

M. Blank1, I. Krause1,2, L. Magrini1, G. Spina3,4, J. Kalil3,4, S. Jacobsen5,

H. J. Thiesen6, M. W. Cunningham7, L. Guilherme3,4 and Y. Shoenfeld1,8

Objective: Rheumatic fever (RF) and the antiphospholipid syndrome (APS) are autoimmune diseases that share similar cardiac

and neurological pathologies. We assessed the presence of shared epitopes between M protein, N-acetyl-b-D-glucosamine

(GlcNAc) and b2 glycoprotein-I (b2GPI), the pathogenic molecules engaged in these autoimmune conditions.

Methods: Sera from the APS patients were affinity-purified on b2GPI and b2GPI-related peptide columns. Sera from RF

patients were affinity-purified on protein G column. The b2GPI and M protein-related peptides were prepared by conventional

solid-phase peptide synthesis. The enzyme-linked immunosorbent assay direct binding and inhibition studies were performed on

the RF and APS sera for the presence, and cross-reactivity, of antibodies against b2GPI, b2GPI-related peptides, streptococcal

M protein, M-derived peptides and GlcNAc.

Results: Antibodies (Abs) to b2GPI were found in 24.4% of 90 RF patients. Antibodies against various b2GPI-related peptides

were found in 1.1–36.7% of the patients. The immunoglobulin G sera from RF patients possessed significant anti-b2GPI

activity, while sera from APS patients contained a considerable anti-streptococcal M protein as well as anti-GlcNAc activity.

Furthermore, affinity-purified anti-b2GPI and anti-b2GPI-related peptide Abs from APS patients cross-reacted with

streptococcal M protein and M5 peptide, while b2GPI and b2GPI-related peptides inhibited anti-streptococcal M protein

activity from RF patients. The results were confirmed by immunoblot analyses. The b2GPI also inhibited anti-GlcNAc activity

from APS patients with chorea.

Conclusions: The results of our study, showing a considerable overlap of humoral immunity in RF and APS, support a

hypothesis that common pathogenic mechanisms underlie the development of cardiac valve lesions and Central Nervous System

abnormalities in both diseases.
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Introduction

Rheumatic fever (RF) and subsequent rheumatic heart disease
(RHD) represent a relatively common connective tissue disease,
caused by Streptoccocus pyogenes infection in 3–4% of susceptible
and untreated children and adolescents [1]. Carditis affects
30–45% of RF patients and is the most serious manifestation of
the disease, leading to valvular lesions and development of RHD.
Other major features of RF include migratory polyarthritis,
erythema marginatum, subcutaneous nodules and Sydenham’s
chorea [2]. By and large, autoimmune diseases have long been
considered a shadow following infectious diseases. Among the
major antigens recognized during a wide variety of bacterial, viral
and parasitic diseases, many belong to conserved protein families,
sharing extensive sequence identity or conformational fits with
host molecules, namely molecular mimicry. Therefore, molecular
mimicry, primarily between streptococcal M protein and self-
structures, has been thought to be a leading mechanism for the
development of acute rheumatic fever (ARF) after streptococcal
pharyngitis [3–5]. Patients with RF have elevated levels of
circulating autoantibodies directed against streptococcal antigens
from bacterial cell wall, such as M protein, N-acetyl-�-D-
glucosamine (GlcNAc) polysaccharide and other not well-defined

streptococcal antigens. These antibodies cross-react with human
proteins having coiled-coil structures, such as myosin, tropo-
myosin and valvular proteins, as well as the surface of human
neuronal cells, hence, they may have a major role in the
pathogenesis of RHD as well as Sydenham’s chorea [5–12].

The classical ‘Hughes Syndrome’—antiphospholipid syndrome
(APS) is characterized by the presence of antiphospholipid
antibodies (aPL) which bind target molecules mainly via �-2-
glycoprotein-I (�2GPI), and/or lupus anticoagulants, associated
with recurrent fetal loss, thromboembolic phenomena, thrombo-
cytopaenia, heart (Libman–Sacks endocarditis) and neurological
disorders [13–19]. The common denominator for all systemic
features in APS is the association with the presence of aPL directed
mainly to �2GPI molecule, a heavily glycosylated membrane-
adhesion glycoprotein, present in blood plasma at a concentration
of 150–300 mg/ml [20, 21]. �2GPI exhibits several properties in vitro
that define it as an anticoagulant [22, 23], and it has a role in the
clearance of apoptotic bodies from the circulation [24, 25]. The
�2GPI molecule was found to be immunogenic and induce
experimental APS model in vivo [26–28]. During the last years,
the infectious origin of APS has proved to be one of the
explanations for generation of anti-�2GPI antibodies (Abs)
by sharing molecular mimicry with common bacteria or with
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cytomegalovirus-derived synthetic peptide [29, 30]. Previous
studies linked the presence of aPL with significant valvular heart
lesions in patients with APS [17, 31, 32]. The pathological spectrum
of valvular lesions found in these patients is indistinguishable from
that found in chronic RHD, and includes non-infective verrucous
vegetations (Libman–Sacks endocarditis), thickening of valve
cusps and, occasionally, significant valvular dysfunction—either
regurgitation, stenosis or both without evidence of vegetations
[33, 34]. Immunoglobulins (Ig), later shown as anti-phospholipid
Abs, in association with complement were shown to be localized on
defective valves derived from APS patients [35, 36]. The frequency
of valvular lesions in APS appears to be quite high, with up to 63%
of APS patients revealing at least one valvular abnormality on
echocardiography [13]. The pathogenesis of valvular abnormalities
in APS is not entirely clear, but it is well-accepted that aPL play
a pathogenic role in the development of these lesions [17, 31, 32].
There are also many case reports and small series of patients
with chorea associated with aPL and APS [37, 38]. In view of the
similarities in clinical, pathological and echocardiographical
presentation between RF and APS, we sought to evaluate possible
immunological mechanisms shared by the two diseases.

Patients and methods

Patients and control subjects

Ninety patients with RHD, followed for a period of 2–5 yrs by a
cardiologist from the Heart Institute at the University of São Paulo,
Brazil, had a previous history of RF, defined according to modified
Jones’ criteria [2] and echocardiographically documented valvular
heart disease, and 24 patients had previous episodes of chorea.
Forty-two APS patients were evaluated, all of them fulfilled the 1997
revised Sapporo criteria for the APS [39]. The sera collection
procedures were approved by the Heart Institute Ethics Committee
(HC-FMUSP) and informed consent was obtained from patients.

Antibodies

ILA-1 mAb. An anti-�2GPI mAb originated from an APS
patient [40]. This mAb was able to activate endothelial cells
via enhancing tissue factor release, adhesion of monocyte and
adhesion molecules expression (ICAM-I, VCAM-I, E-selectin),
and induce experimental APS in-vivo. Peptide B was identified by
this mAb from a phage display peptide library and could neutralize
ILA-1 biological function [40].

Anti-N-acetyl-�-D-glucosamine mAb and preparation of
N-acetyl-�-D-glucosamine–BSA antigen. Anti-streptococcal
mAb 3B6 was specific for N-acetyl-�-D-glucosamine (GlcNAc) [41].
The antigen for 3.B6 mAb N-acetyl-glucoseamine was conjugated
to bovine serum albumin (BSA) by a two-step reaction
as previously described [9, 10]. P-aminiphenyl-2-acetamido-2-
deoxy-�-D-glucopyranoside (Sigma, St Louis, MO) was activated
by an equimolar amount of glutaric dialdehyde in 0.1M sodium
carbonate buffer, pH 9, for 30min at 208C, and then mixed with
BSA (Sigma) in the same buffer. The mixture was incubated 1 h
at 208C with subsequent dialysis against 0.05M Tris-HCl buffer,
pH 8.5. The conjugate was applied onto a DEAE-Sephacryl
column (Pharmacia Biotech, Norden AB Sollentuna, Sweden),
equilibrated with 0.05M Tris-HCl buffer, pH 8.5, and then was
eluted by step gradient of NaCl in the same buffer.

Affinity-purifications

Affinity-purification of the polyclonal anti-�2GPI
Abs. �2GPI was affinity-purified from fresh plasma on a

commercial heparin column (Pharmacia). The purity was
confirmed by SDS-PAGE gel and immunoblot. �2GPI was
conjugated to Cyanogen Bromide (CNBr)-activated sepharose
and a �2GPI column was constructed. The human anti-�2GPI Abs
were affinity-purified from five APS patients’ sera on the �2GPI
column. Sera from the APS patients were loaded onto the �2GPI
column. Following extensive washing, the bound Abs were eluted
with glycine-HCl 0.2M pH 2.5, neutralized with 2M Tris and
dialysed against Phosphate Buffer Saline (PBS).

Affinity-purification of the polyclonal anti-�2GPI/
peptide D Abs. Peptide D 275DKVSFFCKNKEKKC289 was
coupled to CNBr-activated sepharose and used to construct the
peptide D column. Sera from five APS patients positive to peptide
D were loaded onto the column. Glycine-HCl 0.2M pH 2.5 was
used to elute the bound immunoglobulin, neutralized and dialysed.

Origin of IgG from RF patients. Sera from five RF patients
were affinity-purified on protein G column (Pharmacia). Following
extensive washing, the bound Abs were eluted with glycine-HCl
0.2M pH 2.5, neutralized with 2M Tris and dialysed against PBS.
Immunoglobulin G (IgG) affinity-purified from healthy donor on
protein G column (Pharmacia), was used as negative control.

Western blot analyses

Proteins (�2GPI or M protein) were separated in a 10% SDS-
PAGE by carefully placing 5mg of protein in each lane.
Nitrocellulose membrane (Invitrogen Life Technologies) was
used to transfer the proteins, and the membrane was blocked with
5% skimmed milk [in TBS 1% (pH 7.4) and 0.01% Tween-20]. The
appropriate immunoglobulins (anti-�2GPI, IgG from RF patients,
IgG control) were added to the relevant strips and incubated for 2 h
at room temperature. Following extensive washings, the blots were
incubated 1 h at room temperature with anti-peroxidase, and the
reaction was detected using appropriate substrate.

The synthetic peptides used in this study. The following
�2GPI-related peptides were used in the study: peptide A:
58LKTPRV63 (P58–63) [40], peptide B: 208KDKATF213

(P208–213) [40], peptide C: 133TLRVYK138 (P133–138) [40],
peptide D: 275DKVSFFCKNKEKKC289 (P275–289) [42, 43].
Scrambled forms of the studied �2GPI-related synthetic peptides
were used as negative controls: scrambled peptide A (scA):
RLTVKP, sc-peptide B: FKTKDA, sc-peptide C: VTRYLK,
sc-peptide D: KFKDEFKSKCNK, sc-peptide E: PKSVCQKRV
GRTQLASQVIV.

The following M protein peptides were used from the
N-terminal portion: 11QRAKEALDKYELENH25 (P11–25), 62LER
KTAELTSEKKEHEAENDK82 (P62–82), 81DKLKQQRDTLST
QKET96 (P81–96) [44], 111TQELANKQQESKENEKALN130

(P111–130), 131ELLEKTVKDKIAKEQENKET150 (P131–150),
183LDETVKDKLAKEQKSKQNI201 (P183–201) [45], 163ETIGT
LKKILDETVK177 (P163–177), 191LAKEQKSKQNIGALKQE
LAK 210 (P191–210) [44, 45]. Scrambled form of M5 peptide,
KLKADQSEKIQDENVKTKL, was used as a control for the
inhibition assays.

M streptococcal peptides were synthesized by the ‘tea bag’
method using t-BOC chemistry (Laboratory of Immunology,
Heart Institute, São-Paulo, Brazil) and were checked by mass
spectrometry and purified by high pressure liquid chromatography
(HPLC). The �2GPI peptides were prepared by conventional solid-
phase peptide synthesis, using an ABIMED AMS-422 automated
solid-phase multiple peptide synthesizer (Langfeld, Germany). For
purity determination, analytical reversed-phase HPLC was per-
formed using a prepacked Lichrosphere-100 RP-18 column
(Merck, Darmstadt, Germany).
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Peptide biotinylation. Resin-bound peptides of 11mg (Wang-
Resin, Calbiochem-Novabiochem AG, Lufelfingen, Switzerland)
were suspended in N-methyl-2-pyroidone (NMP). Fifteen mmol of
biotin-N-hydroxysuccinimide (Sigma Chemical Co., St Louis MO,
USA) and 15 nmol of di-isopropylethylamine were added to
the peptide mixture. After 16 h, the biotinylated peptides were
deprotected and cleaved from the resin by a cleavage mixture
containing 5% triethylsilan (Fluka Chemicals, Buchs,
Switzerland), 5% water and 90% trifluoroacetic acid. The cleaved
peptides were precipitated with ice-cold peroxide-free ether and
the pellet was dissolved in water and subsequently lyophilized.
Biotinylated peptides were purified by HPLC using 0.1% trifluoro-
acetic acid in 20% H2O in acetonitrile.

Direct binding of sera or IgG from
RF patients, or anti-�2GPI to �2GPI

Ninety-six wells-enzyme-linked immunosorbent asssay (ELISA)
plates (Maxisorp, Nunc, Kamstrup, Roskilde, Denmark) were
coated with �2GPI 1�g/ml in PBS. Coated plates were blocked
with 3% BSA, after which human sera from RF patients and from
healthy controls, at different dilutions 1:200–1:6500 or affinity-
purified IgG at concentration of 0–50�g/ml were added for 2 h at
room temperature. The binding was probed by goat anti-human
IgG conjugated to alkaline phosphatase (Jackson, Research
Laboratory Inc., West Grove, Pennsylvania, USA) and appropriate
substrate. The colour reaction was read in Titertrek ELISA reader
(SLT- Labistruments, Austria) at optical density (OD) of 405nm.
Positive binding was defined as OD higher than meanþ 2 S.D.

Direct binding of sera or anti-�2GPI to M protein

Ninety-six-well ELISA plates (Maxisorp, Nunc, Kamstrup,
Roskilde, Denmark) were coated with a recombinant M protein
(Guilherme L) 5�g/ml in PBS. Coated plates were blocked with
3% BSA, after which human sera from APS patients at different
dilutions 1:200–1:6500 or affinity-purified anti-�2GPI at concen-
tration of 0–50�g/ml were added for 2 h at room temperature.
The binding was probed as described above.

Direct binding of Ig to the studied peptides

The binding of the anti-�2GPI Abs or sera from RF patients or
IgG affinity-purified from RF patients was determined by ELISA.
Ninety-six-well ELISA plates were coated with streptavidin
5�g/ml in NaHCO3 0.05M pH 9.5 overnight at 48C. The plates
were blocked with 3% BSA for 1 h at 378C and exposed to
biotinylated peptides for 2 h at room temperature followed by a
second blocking procedure with 3% BSA. The tested immunoglo-
bulins were added at different concentrations for 2 h incubation
at room temperature. The immunoglobulin binding to the
peptides was probed with anti-human-IgG conjugated to alkaline
phosphatase followed by the addition of appropriate substrate.

Inhibition of binding of sera or affinity-purified IgG
from APS and RF patients to the different peptides

The cross-reactivity of binding of anti-�2GPI Abs from APS or
total IgG affinity-purified from RF patients to �2GPI or
M protein was confirmed by: (i) direct binding of the APS sera
or affinity-purified anti-�2GPI Abs to M protein and its synthetic
peptides; (ii) direct binding of the RF sera or affinity-purified IgG
to �2GPI and its synthetic peptides and (iii) inhibition assays.
�2GPI molecule, �2GPI-related synthetic peptides, group A
streptococcal M protein and M protein synthetic derivatives

(listed earlier) were used as inhibitors. Affinity-purified anti-
�2GPI Abs from five APS patients or total RF-IgG from five
patients, at 50% binding to �2GPI orM-protein, respectively, were
pre-incubated (overnight at 48C) with different concentrations
of �2GPI related synthetic peptides, M protein and its related
synthetic peptides. The reaction mixture was then transferred
to �2GPI or M protein-coated ELISA plates. The binding was
probed with anti-human-Fc conjugated to alkaline phosphatase
(Jackson) and appropriate substrate. The percentage of inhibition
was calculated as follows:

Inhibition ð%Þ ¼

½ðOD affinity� purified IgGÞ

�ðOD affinity� purified IgG with inhibitorÞ�

OD ðaffinity� purified IgGÞ � 100
:

Results

Anti-�2GPI targeting of RF sera

Ninety patients with RHD were studied, all of them fulfilled the
modified Jones’ criteria [2]. Patients’ characteristics are presented
in Table 1. Twenty-two RHD patients tested positive for anti-
�2GPI Abs (24.4%, P<0.001 vs controls) (Table 2). Antibodies
against peptides B and D were also significantly elevated compared
with controls (P<0.001) (Table 2). IgG was affinity-purified from
five representative sera from RF patients. The anti-�2GPI binding
of the RF sera at dilution of 1:400 was significantly elevated and
ranged between 0.450±08 and 0.832±0.101 OD at 405 nm, in
comparison with OD of 1.714±0.124 OD at 405 nm APS patients’
sera (P<0.004), or 0.118±0.047 OD at 405 nm of sera from an
healthy individual (P<0.001), at the same concentration (Fig. 1A).
The binding of sera derived from patients with RF to �2GPI
behaved in a dose-dependent manner (Fig. 1A). The data were

TABLE 1. Patients’ characteristics

RF patients’ characteristics
Age (yrs, mean±S.D.) 14.4±3.8
Number of RF acute attacks (mean±S.D.) 1.4±0.6
Males:females 33:57
Documented acute carditis (%) 69.5
Polyarthritis (%) 33.3
Chorea (%) 29.3

APS patients’ characteristics
Age (yrs, mean±S.D.) 40.0±13.7
Males:females 4:38
Recurrent abortions (%) 33.3
Thrombotic episodes (%) 85.7
Stroke (%) 45.2
Epilepsy (%) 9.5
Chorea (%) 4.8
Cardiac valvular disease (%) 33.3
Livedo reticularis (%) 11.9
Thrombocytopaenia (%) 21.4

TABLE 2. Prevalence of anti-�2GPI and its derivatives in sera of RF
patients

Antibodies against
RF patients
(n¼ 90)

Controls
(n¼ 100) P-value

�2GPI 22 (24.4%) 4 (4.0%) <0.001
Peptide A 58LKTPRV63 5 (5.6%) 2 (2.0%) NS
Peptide B 208KDKATF213 33 (36.7%) 3 (3.0%) <0.001
Peptide C 133TLRVYK138 1 (1.1%) 4 (4.0%) NS
Peptide D 275DKVSFFCKNKEKKC289 16 (17.8%) 3 (3.0%) <0.001
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confirmed by immunoblot (Fig. 1B). As seen in line 1–5, IgG
which was affinity-purified from five representative sera from
RF patients bind to �2GPI in the same manner as anti-�2GPI
affinity-purified from two APS patients’ sera. Irrelevant IgG did
not bind �2GPI.

Anti-M protein targeting by sera originated
from APS patients

Forty-two APS patients were evaluated, 38 females and four
males, mean age 40.0±13.7 yrs, mean follow-up period was
7.5±4.3 yrs. Patient’s characteristics are presented in Table 1.
As demonstrated in Table 3, 16.6% of the APS patients’ sera
significantly recognized M protein as well as the peptides located
at positions 62–82, 131–150 and 163–177. The most prominent
recognition was noticed for the M peptide 183LDETVKDKL
AKEQKSKQNI201 (14.2%, P<0.001). Significant M protein
binding by affinity-purified anti-�2GPI Abs from five APS
patients’ sera (P<0.02), in a dose-dependent pattern, is demon-
strated in Fig. 2a. The data were confirmed by immunoblot
(Fig. 2b). Affinity-purified anti-�2GPI from five representative
sera from APS patients bound to M protein at the same manner
as IgG affinity-purified from sera originated from two patients
with RF. Irrelevant IgG did not bind M protein.

Anti-�2GPI Abs affinity-purified from APS patients
cross-react with M protein and M5 peptide (P183–201)

The cross-reactivity of anti-�2GPI with M protein was docu-
mented by inhibition assays. Figure 3 presents an inhibition of

44±3% in the binding of affinity-purified anti-�2GPI to �2GPI
by M protein, and 29±3% by M5 peptide (P183–201) at a
concentration of 25�g/ml. This inhibition of binding by M protein
was significant when compared with the binding of anti-�2GPI
(85±6%) (P<0.02) and in the presence of scrambled peptides
(6±2%) (P<0.001). Non-significant difference in the percentage
of inhibition was noticed when �2GPI-related peptide B or M5
peptide (P183–201) were used as inhibitors (P>0.05). These data
were strengthen by the strong inhibitory potential of M5 peptide
(P183–201) to inhibit the binding of affinity-purified anti-�2GPI/
peptide D to �2GPI-related peptide D, P<0.001 as compared
with scrambled form of the peptides (Fig. 4). The difference
in �2GPI/peptide D (84±6%) and M5 peptide (69±5%) as
inhibitors was non-significant (P>0.05). Furthermore, M5
peptide (P183–201) could significantly abrogate the binding of
anti-�2GPI/peptide B mAb to �2GPI/peptide B (e.g. 58±6%
inhibition in comparison with 7±2% using scrambled peptide M5,
P<0.002, as shown in Fig. 5.

�2GPI and �2GPI-related peptides B and D
inhibited the binding of RF-IgG to M protein

M protein inhibited the binding of RF-IgG to M protein
by 84±6% at a concentration of 25�g/ml, while the M5 peptide
183LDETVKDKLAKEQKSKQNI201 inhibited by 62±6%
(Fig. 6). �2GPI and �2GPI-related peptide B 208KDKATF213 or
peptide D 275DKVSFFCKNKEKKC289 decreased the binding
of RF-IgG toM protein by 31±4, 36±3 and 42±2%, respectively
(P>0.05 each vs the other, and P<0.001 in comparison with
scrambled peptide <10%, concentration of 25�g/ml) (Fig. 6).
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FIG. 1. (A) Anti-�2GPI binding of affinity-purified IgG from five RF patients. Affinity-purified IgG from five RF patients was
introduced to �2GPI-coated plates at different concentrations. The data are presented as mean±S.D. in OD at 405 nm, of three
repetitive experiments. (B) Anti-�2GPI binding of affinity-purified IgG from five RF patients by western blot. �2GPI, run on 12%
SDS-PAGE, transferred to nitrocellulose, was probed with affinity-purified IgG from five RF patients (lines 1–5), anti-�2GPI IgG
affinity-purified from APS patients (lines 6, 7) and control IgG (line 8), were introduced to �2GPI on the nitrocellulose.

TABLE 3. Prevalence of anti-M protein and its derivatives in sera of APS patients

Ab to APS patients (n¼ 42) Healthy individuals (n¼ 100) P-value

M protein 7 (16.6%) 2 (2.0%) P<0.001
11QRAKEALDKYELENH25 1 (2.3%) 1 (1.0%) NS
62LERKTAELTSEKKEHEAENDK82 4 (9.5%) – P<0.02
81DKLKQQRDTLSTQKET96 2 (4.8%) 1 (1.0%) NS
111TQELANKQQESKENEKALN130 3 (7.1%) – NS
131ELLEKTVKDKIAKEQENKET150 4 (9.5%) – P<0.02
163ETIGTLKKILDETVK177 4 (9.5%) 1 (1.0%) P<0.02
183LDETVKDKLAKEQKSKQNI201 6 (14.2%) 1 (1.0%) P<0.001
191LAKEQKSKQNIGALKQELAK210 2 (4.8%) 1 (1.0%) NS
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Anti-�2GPI affinity-purified from two APS
patients with chorea cross-react with GlcNAc

RF patients have circulating anti-GlcNAc Abs with reactivity
towards cardiac myosin and neuronal cells [10, 11]. Figure 7 shows
that anti-�2GPI affinity-purified from sera of two APS patients
with chorea also recognize GlcNAc in a dose-dependent manner
(e.g. 0.410±0.06 OD at 405 nm, 0.341±0.07 OD at 405 nm at
concentration of 1�g/ml, respectively). The anti-GlcNAc activity
of the anti-�2GPI was significant in comparison with 0.05±0.05
OD at 405 nm of anti-�2GPI purified from an APS patient with
no chorea and no anti-GlcNAc activity, P<0.001.

To further evaluate the cross-reactivity between the anti-�2GPI
and anti-GlcNAc mAb from a RF patient, inhibition experiments
were conducted. As described in Fig. 8, IgG affinity-purified from
two APS chorea-positive patients bound GlcNAc by 5.1 times less
or 4.1 times less when inhibited by GlcNAc, in comparison with

inhibition by six times of the binding of GlcNAc by anti-GlcNAc
mAb, P<0.002 in comparison with the binding of control IgG
from APS patient without chorea. Control antigen BSA was not
inhibitory to the Abs. �2GPI (at high concentration of 0.5mg/ml),
abrogated the binding of anti-GlcNAc mAb 3.B6, and of APS/
chorea-positive IgG, to GlcNAc by 41.5, 42.4 and 47.4%,
respectively. This inhibition was significant (P<0.02), in compar-
ison with 90.6, 75.4 and 80% inhibition of 3.B6 by GlcNAc in the
presence of GlcNAc, or P<0.001 in comparison with IgG from
chorea-negative APS.

Discussion

In the present study, we demonstrate a considerable overlap
of antibody specificities in RF and APS. About 24% of the RHD
patients had anti-�2GPI Abs. Antibodies against �2GPI-related
peptides were also common. We showed that not only IgG sera
from RF patients possess significant anti-�2GPI activity, but also
sera from APS patients contain a considerable anti-streptococcal
M protein, as well as anti-GlcNAc activity. Furthermore, affinity-
purified anti-�2GPI and anti-�2GPI-related peptide Abs from
APS patients cross-reacted with streptococcal M protein and
M5 peptide, while �2GPI and �2GPI-related peptides B and
D inhibited anti-M protein activity of RF patients. �2GPI also
inhibited anti-GlcNAc activity from APS patients with chorea.

The role of streptococcal infection in the aetiopathogenesis of
RF is well-established [46–50]. Although there is little evidence
for direct involvement of group A streptococci in the affected
tissues of ARF patients, there is a large body of epidemiological
and immunological data indirectly implicating group A strepto-
coccus in the initiation of the disease process. It is well-known that
outbreaks of RF closely follow epidemics of either streptococcal
sore throats or scarlet fever, adequate antibiotic treatment of a
documented streptococcal pharyngitis markedly reduces the
incidence of subsequent RF, and appropriate antimicrobial
prophylaxis prevents the recurrences of disease in known ARF
patients [51]. In contrast to RF, the relationship between infectious
agents and development of APS has only recently been recognized.
The aPL have been documented in a large number of infectious
diseases, including viral, bacterial, spirochetal and parasitic
infections [52]. Although the incidence and clinical significance of
�2GPI-dependent aPL in infectious diseases remains largely
unknown, it is possible that infections might trigger the develop-
ment of pathogenic anti-�2GPI Abs, conceivably via molecular
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mimicry, thus promoting the development of APS, particularly in
predisposed individuals. Indeed, we recently demonstrated a high
homology between �2GPI-related hexapeptide, also employed in
the current study and peptidic domains of Streptococcus pyogenes
[30, 52]. Furthermore, studies on experimental APS models proved
that molecular mimicry between �2GPI-related synthetic peptides
and structures within bacteria, viruses and tetanus toxoid are
a cause for experimental APS [29, 30]. Recently, we also demon-
strated a possible link to the infectious origin of Libman–Sacks
endocarditis [53]. The similarity between anti-�2GPI and anti-M5,
as well as anti-GlcNAc activity, as found in our study, may point
that certain strains of group A streptococcal infection might have
a causative role not only in RF but also for APS development.
Indeed, several previous reports showed the presence of aPL in
streptococcal infection. Ardiles et al. [54] reported a prevalence of
48% of aCL in patients with acute post-streptococcal glomerulo-
nephritis and 33% in streptococcal impetigo patients without
renal involvement. A serological follow-up was performed with
a second sample taken about 7 months later for the patients
initially positive on IgG testing showing persistence in nine out of

12 patients. In another study, raised titres of aCL were detected in
eight of 13 patients with post-streptococcal reactive arthritis [55]
which were, however, independent of �2GPI and were not
accompanied by thrombotic episodes. Controversies exist
regarding the prevalence of aPL in RF patients. Previous studies
of anti-group A streptococcal cross-reactive mAbs demonstrated
reactivity with cardiolipin [56]. Figueroa et al. [57] reported a high
rate of aCL in a group of 55 RF patients. Eighty percent of the
patients were positive for aCL during acute RF attack vs 40%
when the disease was inactive. Furthermore, a significant associa-
tion was found between IgM-aCL and rheumatic valvular disease
[57]. On the other hand, Ilarraza et al. [58] did not find
anticardiopipin (aCL) in the sera of 31 RHD patients as well as
in six patients with acute RF. Similarly, Narin et al. [59] found no
significant difference in aCL levels between patients with RF or
streptococcal pharyngitis and healthy controls. Diniz et al. [60]
failed to identify aCL in 56 children with ARF and chorea, similar
to the results reported by Asherson et al. [61]. Differences in the
detection of anti-CL and anti-PL may be due to assay conditions
and the detection sensitivity of the assays used. Until the assays for
aCL and other aPL are standardized, comparison of different
outcomes in different laboratories is difficult.
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The pathogenic mechanisms involved in cardiac as well as
other target organ diseases in RF has been widely investigated.
Molecular mimicry was demonstrated regarding both humoral
and cellular immune responses. Anti-streptococcal antibodies
cross-react with several human tissues, including the heart, skin,
brain, glomerular basement membrane, and striated and smooth
muscles [50, 62]. Cross-reactive antibodies in the heart tissue may
then bind to valvular endothelium leading to inflammation,
cellular infiltration and valve deformities [10]. Once activated,
the valvular endothelium expresses increased amounts of adhesion
molecule VCAM-1, which facilitates the binding/adhesion of
T-cells and consequently extravasation into the valves, leading
to the cycle of scarring, neovascularization and infiltration of
lymphocytes [63]. The mechanisms by which anti-�2GPI exert
tissue damage in APS have also been widely investigated. Anti-
�2GPI Abs were found to activate monocytes leading to tissue
factor release and activate endothelial cells via induction of
adhesion molecule expression including E-selectin, ICAM-I and
VCAM-I [64–66]. The anti-�2GPI Abs were found to react with
their antigen in association with a member of the TLR/IL-1 toll
like receptor membrane on endothelial cells and directly induce
activation [35]. Recently, it was suggested that endothelial cell
activation induced by anti-�2GPI is initiated by cross-linking or
clustering of annexin-A2 on the endothelial surface [67].
In contrast to RF, however, the pathogenesis of valvular
abnormalities in APS is yet largely unknown. It has been
postulated that aPL directly cause valvular or endothelial injury
unrelated to severity of the disease. Ziporen et al. [32] have shown
positive staining for human immunoglobulins and for complement
compounds in the sub-endothelial layer along the surface of
the leaflets and cusps. Amital et al. [31] reported similar findings
with deposition of aCL in the sub-endothelial layer of the valve.
These findings clearly indicate that the deposition of aPL on the
valves resembles the deposition of immune complexes in the
dermo-epidermal junction or in the kidney basement membrane
in patients with SLE. As postulated by Hojnik et al. [17], the above
data suggest that aPL play a pathogenic role in the development

of valvular lesions rather than being elicited by the antigens
expressed in the damaged valve tissue. The results of the present
study, showing a considerable overlap between anti-�2GPI and
anti-M protein or anti-GlcNAc Abs, support a hypothesis that
common pathogenic mechanisms underlie the development of
cardiac valve lesions and CNS abnormalities in both RF and APS.
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